Solution 1. In each step, the breadth-first algorithm proceeds from a vertex (fetched from the front of Q) to the direct neighbours. It needs to keep track of which vertices are still to consider, stored in a queue Q, and the distance vector storing the current shortest distance to vertex 1.

We can visualize its behavior, by showing the content of Q and the distance vector at each time step:

<table>
<thead>
<tr>
<th>Step</th>
<th>Queue</th>
<th>Distance vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1)</td>
<td>(0, ∞, ∞, ∞, ∞, ∞)</td>
</tr>
<tr>
<td>2</td>
<td>(2,3,6)</td>
<td>(0, 1, 1, ∞, ∞, 1)</td>
</tr>
<tr>
<td>3</td>
<td>(3,6)</td>
<td>(0, 1, 1, ∞, ∞, 1)</td>
</tr>
<tr>
<td>4</td>
<td>(6,4)</td>
<td>(0, 1, 1, 2, ∞, 1)</td>
</tr>
<tr>
<td>5</td>
<td>(4)</td>
<td>(0, 1, 1, 2, ∞, 1)</td>
</tr>
<tr>
<td>6</td>
<td>(5)</td>
<td>(0, 1, 1, 2, 3, 1)</td>
</tr>
<tr>
<td>7</td>
<td>∅</td>
<td>(0, 1, 1, 2, 3, 1)</td>
</tr>
</tbody>
</table>

The vertices are visited in the order 1, 2, 3, 6, 4, 5.

Solution 2. Cliques:

Size 3: The vertices 1, 2 and 3 form a clique of size 3.

Size 2: The edges 1 – 6, 3 – 4, 4 – 5 and 5 – 6 are cliques of size 2.

Cores:

k = 3: There are no 3-cores.

k = 2: The vertices 1, 2, 3, 4 and 6 form a 2-core.

k = 1: All vertices are part of the 1-core.

Solution 3.
Consider the above graph:

- It has two weakly connected components, namely $\{1, \ldots, 6\}$ and $\{7, 8, 9\}$.
- It has three strongly connected components, namely $\{1, 2, 3\}$, $\{4, 5, 6\}$ and $\{7, 8, 9\}$.

The SCC $\{1, 2, 3\}$ has no in-component, but the vertices 4, 5, 6 in its out-component.
The SCC $\{4, 5, 6\}$ has the vertices 1, 2, 3 in its in-component, but no out-component.
The SCC $\{7, 8, 9\}$ has empty in- and out-components.

Solution 4. Topological sorting: Kahn’s algorithm from Wikipedia

L := Empty list that will contain the sorted elements
S := Set of all nodes with no incoming edges
while S is non-empty do
2. Solution

remove a node n from S
add n to tail of L
for each node m with an edge e from n to m do
 remove edge e from the graph
 if m has no other incoming edges then
 insert m into S
if graph has edges then
 return error (graph has at least one cycle)
else
 return L (a topologically sorted order)

Implementation in R:

- Graph given as adjacency matrix A

topo_sort <- function (g) {
 A <- t(as.matrix(as_adjacency_matrix(g)))

 count.incoming <- function (i) {
 # Convention: A_{ij} = 1 denotes edge j -> i
 sum(A[i,])
 }

 N <- nrow(A);
 L <- c();
 S <- Filter(function(i) { count.incoming(i) == 0 }, 1:N);
 while (length(S) > 0) {
 n <- S[1]; S <- S[-1];
 L <- c(L, n)
 for (m in 1:N) {
 if (A[m,n] > 0) {
 A[m,n] <- 0;
 if (count.incoming(m) == 0) {
 S <- c(m, S);
 }
 }
 }
 }
 if (sum(A) > 0) {
 stop('Not a DAG!');
 }
}
Analysis of runtime:

- `count.incoming`: $O(N)$
- Initialization of S: $O(N^2)$
- While loop runs N times:
 - Appending to L: $O(N)$
 - For loop runs N times and uses `count.incoming`: $O(N^2)$

Total runtime: $O(N^3)$

- Alternative algorithm: Based on depth-first search
- Best possible runtime: $O(N + M)$, i.e. linear

Finally, we should test our algorithm on some examples:

```r
library(igraph)

g_1 <- tribble(~from, ~to, 
  1, 2, 
  1, 3, 
  2, 3) %>%
  graph_from_data_frame()

plot(g_1, vertex.color = "lightblue", vertex.size = 25)
```
2. Solution

```r
topo_sort(g_1)
## + 3/3 vertices, named, from f89c1c2:
## [1] 1 2 3

plot(g_2, vertex.color = "lightblue", vertex.size = 25)
```
Solution 5. First, we load some libraries and then read in the data:

```r
topo_sort(g_2)
## + 13/13 vertices, named, from c0192b5:
## [1] 1 2 3 4 5 6 8 7 9 10 11 13 12
```

```r
library(tidyverse)
library(igraph)

g <- "amazon0302.txt" %>%
  read_delim(delim = "\tab"),
```
Then, we look at the empirical degree distribution:

```r
skip = 4,
col_names = c("from", "to") %>%
graph_from_data_frame()
## Parsed with column specification:
## cols(
##   from = col_double(),
##   to = col_double()
## )
```

```r
deg_df <- tibble(prob=degree_distribution(g)) %>%
  mutate(k=seq.int(from=0, along.with=prob))

deg_df %>%
  ggplot(aes(k, prob)) +
  geom_point() +
  scale_x_log10() +
  scale_y_log10()

## Warning: Transformation introduced infinite values in continuous x-axis
## Warning: Transformation introduced infinite values in continuous y-axis
```
As explained in the lecture to investigate its tail it is usually better to plot the cumulative empirical degree distribution:

```r
deg_df <- deg_df %>%
  mutate(ecdf = 1 - cumsum(prob))

deg_df %>%
  ggplot(aes(k, ecdf)) +
  geom_point() +
  scale_x_log10() +
  scale_y_log10()
```

Warning: Transformation introduced infinite values in continuous x-axis
Now we are ready to load the poweRlaw library and fit a (discrete) power law distribution to the observed degrees:

```r
library(poweRlaw)

deg_seq <- g %>%
  degree(mode = "all")

dpl <- displ$new(deg_seq)

fit <- estimate_xmin(dpl)
fit
```
Thus, the library would choose $x_{\text{min}} = 35$ for the following fit:

```r
dpl$\text{xmin} = \text{fit}\$\text{xmin}
dpl$\text{pars} = \text{fit}\$\text{pars}
```

```r
plot(dpl)
lines(dpl, col = "blue", lwd = 2)
```
where we have used the builtin methods for plotting the cumulative distribution of the data and fitted power law.

To investigate if this cutoff is a reasonable choice, we can visualize how the fitted tail exponent α changes with x_{min}:

tibble(cutoff = seq(min(deg_seq), 0.9 * max(deg_seq), by = 1),
 alpha = map_dbl(cutoff,
 function (x_cut) {
 dpl$xmin = x_cut
 estimate_pars(dpl)$pars
 })) %>%
 ggplot(aes(cutoff, alpha)) +
 geom_line()
Finally, we fit exponential and log-normal distributions and compare the results with our power law:

```r
dpl$xmin = fit$xmin
dpl$pars = fit$pars

## Fit discrete exponential distribution
dexp <- disexp$new(deg_seq)
dexp$xmin <- fit$xmin
dexp$pars <- estimate_pars(dexp)

## Fit discrete log-normal
dln <- dislnorm$new(deg_seq)
dln$xmin <- fit$xmin
dln$pars <- estimate_pars(dln)
```
The exponential fit is obviously not good, but the discrete power law and discrete log-normal are visually indistinguishable. Indeed, a likelihood ratio test reveals that we cannot reject the null hypothesis that both fits are equally good.

```r
comp <- compare_distributions(dpl, dln)

## p-value for dpl being better
comp$p_one_sided
```
Solution

p-value for any model being better

```r
comp$p_two_sided
```

Detailed comparison of likelihood ratio per data point

```r
comp$ratio %>%
  group_by(x, ratio) %>%
  summarize(cnt = n()) %>%
  ggplot(aes(x, ratio, 
            color = ratio >= 0, 
            size = cnt)) +
  geom_point(alpha = 0.6) +
  scale_color_discrete(name = "Test result", 
                       labels = c("log-normal", "power law")) +
  labs(x = "k", y = "Likelihood ratio", size = "Count") +
  scale_x_log10()
```
0.000 -
0.005 -
0.010 -
0.015 -
0.020 -

Test result
- log-normal
- power law

Count
- 30
- 60
- 90

Complex Networks – Methods and Algorithms
2. Solution

N. Bertschinger