Solution 1. In each step, the breadth-first algorithm proceeds from a vertex (fetched from the front of Q) to the direct neighbours. It needs to keep track of which vertices are still to consider, stored in a queue Q, and the distance vector storing the current shortest distance to vertex 2. We can visualize its behavior, by showing the content of Q and the distance vector at each time step:

<table>
<thead>
<tr>
<th>Step</th>
<th>Queue</th>
<th>Distance vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(2)</td>
<td>(∞,0,∞,∞,∞,∞)</td>
</tr>
<tr>
<td>2</td>
<td>(1,4)</td>
<td>(1,0,∞,1,∞,∞)</td>
</tr>
<tr>
<td>3</td>
<td>(4,3)</td>
<td>(1,0,2,1,∞,∞)</td>
</tr>
<tr>
<td>4</td>
<td>(3,5,6)</td>
<td>(1,0,2,1,2,2)</td>
</tr>
<tr>
<td>5</td>
<td>(5,6)</td>
<td>(1,0,2,1,2,2)</td>
</tr>
<tr>
<td>6</td>
<td>(6)</td>
<td>(1,0,2,1,2,2)</td>
</tr>
<tr>
<td>7</td>
<td>∅</td>
<td>(1,0,2,1,2,2)</td>
</tr>
</tbody>
</table>

The vertices are visited in the order (2,1,4,3,5,6)

Solution 2.
Consider the above graph:

- It has two weakly connected components, namely \{1, \ldots , 6\} and \{7, 8, 9\}.
- It has three strongly connected components, namely \{1, 2, 3\}, \{4, 5, 6\} and \{7, 8, 9\}.

The SCC \{1, 2, 3\} has no in-component, but the vertices 4, 5, 6 in its out-component.
The SCC \{4, 5, 6\} has the vertices 1, 2, 3 in its in-component, but no out-component.
The SCC \{7, 8, 9\} has empty in- and out-components.

Solution 3. Topological sorting: Kahn’s algorithm from Wikipedia

L := Empty list that will contain the sorted elements
S := Set of all nodes with no incoming edges
while S is non-empty do
remove a node \(n \) from \(S \)
add \(n \) to tail of \(L \)
for each node \(m \) with an edge \(e \) from \(n \) to \(m \) do
remove edge \(e \) from the graph
if \(m \) has no other incoming edges then
insert \(m \) into \(S \)
if graph has edges then
return error (graph has at least one cycle)
else
return \(L \) (a topologically sorted order)

Implementation in R:

- Graph given as adjacency matrix \(A \)

```r
# Graph given as adjacency matrix A
topo_sort <- function (g) {
  A <- t(as.matrix(as_adjacency_matrix(g)))

  count.incoming <- function (i) {
    # Convention: \( A_{ij} = 1 \) denotes edge \( j \rightarrow i \)
    sum(A[i,])
  }

  N <- nrow(A);
  L <- c();
  S <- Filter( function(i) { count.incoming(i) == 0 }, 1:N );
  while (length(S) > 0) {
    n <- S[1]; S <- S[-1];
    L <- c(L, n)
    for (m in 1:N) {
      if (A[m,n] > 0) {
        A[m,n] <- 0;
        if (count.incoming(m) == 0) {
          S <- c(m, S);
        }
      }
    }
  }
  if (sum(A) > 0) {
    stop('Not a DAG!');
  }
}
```
Analysis of runtime:

- count.incoming: $O(N)$
- Initialization of S: $O(N^2)$
- While loop runs N times:
 - Appending to L: $O(N)$
 - For loop runs N times and uses count.incoming: $O(N^2)$

Total runtime: $O(N^3)$

- Alternative algorithm: Based on depth-first search
- Best possible runtime: $O(N + M)$, i.e. linear

Finally, we should test our algorithm on some examples:

```r
library(igraph)
g_1 <- tribble(~from, ~to,  
               1, 2,  
               1, 3,  
               2, 3) %>%
               graph_from_data_frame()
g_2 <- tribble(~from, ~to,  
               1, c(2, 3, 6, 10),  
               2, c(3, 12),  
               3, c(4),  
               4, c(5, 6),  
               6, c(7, 8, 9, 10),  
               9, c(10),  
               10, c(11),  
               11, c(12, 13)) %>%
               unnest() %>%
               graph_from_data_frame()
plot(g_1, vertex.color = "lightblue", vertex.size = 25)
```
```r
topo_sort(g_1)
## + 3/3 vertices, named, from 36c4d43:
## [1] 1 2 3

plot(g_2, vertex.color = "lightblue", vertex.size = 25)
```
Solution 4. First, we install load some libraries and then read in the data:

```r
library(tidyverse)
library(igraph)

g <- "amazon0302.txt" %>%
```

```r
topo_sort(g_2)
## + 13/13 vertices, named, from f682f0:
## [1] 1 2 3 4 5 6 8 7 9 10 11 13 12
```

```r
```
• Then, we look at the empirical degree distribution:

```r
deg_df <- tibble(prob=degree_distribution(g)) %>%
  mutate(k=seq.int(from=0, along.with=prob))
```

```
## Warning: Transformation introduced infinite values in continuous x-axis
## Warning: Transformation introduced infinite values in continuous y-axis
```

```r
deg_df %>%
ggplot(aes(k, prob)) +
geom_point() +
scale_x_log10() +
scale_y_log10()
```
As explained in the lecture to investigate its tail it is usually better to plot the cumulative empirical degree distribution:

```r
deg_df <- deg_df %>%
  mutate(ecdf = 1 - cumsum(prob))

deg_df %>%
  ggplot(aes(k, ecdf)) +
  geom_point() +
  scale_x_log10() +
  scale_y_log10()
```

```
## Warning: Transformation introduced infinite values in continuous x-axis
```
• Now we are ready to load the poweRlaw library and fit a (discrete) power law distribution to the observed degrees:

```r
library(poweRlaw)

deg_seq <- g %>%
  degree(mode = "all")

dpl <- displ$new(deg_seq)

fit <- estimate_xmin(dpl)
fit
```
Thus, the library would choose $x_{\text{min}} = 35$ for the following fit:

```r
dpl$xmin = fit$xmin
dpl$pars = fit$pars

plot(dpl)
lines(dpl, col = "blue", lwd = 2)
```
where we have used the built-in methods for plotting the cumulative distribution of the data and fitted power law.

To investigate if this cutoff is a reasonable choice, we can visualize how the fitted tail exponent α changes with x_{min}:

```r
tibble(cutoff = seq(min(deg_seq), 0.9 * max(deg_seq), by = 1),
alpha = map_dbl(cutoff,
  function(x_cut) {
    dpl$xmin = x_cut
    estimate_pars(dpl)$pars
  }))
```
Finally, we fit exponential and log-normal distributions and compare the results with our power law:

```
dpl$xmin = fit$xmin
dpl$pars = fit$pars

### Fit discrete exponential distribution
dexp <- disexp$new(deg_seq)
dexp$xmin <- fit$xmin
dexp$pars <- estimate_pars(dexp)

### Fit discrete log-normal
dln <- dislnorm$new(deg_seq)
dln$xmin <- fit$xmin
dln$pars <- estimate_pars(dln)
```
The exponential fit is obviously not good, but the discrete power law and discrete log-normal are visually indistinguishable. Indeed, a likelihood ratio test reveals that we cannot reject the null hypothesis that both fits are equally good.

```r
comp <- compare_distributions(dpl, dln)
## p-value for dpl being better
comp$p_one_sided
```
0.5020309

p-value for any model being better
comp$p_two_sided

[1] 0.9959382

Detailed comparison of likelihood ratio per data point
comp$ratio %>%
group_by(x, ratio) %>%
summarize(cnt = n()) %>%
ggplot(aes(x, ratio,
 color = ratio >= 0,
 size = cnt)) +
geom_point(alpha = 0.6) +
scale_color_discrete(name = "Test result",
 labels = c("log-normal", "power law")) +
labs(x = "k", y = "Likelihood ratio", size = "Count") +
scale_x_log10()