Governance Structures
Governance Structures

Software Carpentry

Steering Committee (2017)

<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rayna Harris</td>
<td>Graduate student at the University of Texas in Austin. Studies the neuromolecular basis of social behavior and is involved in several initiatives to enhance training in the life sciences. Instrucor Trainer, Steering Committee (2016 Member, 2017 Secretary)</td>
</tr>
<tr>
<td>Kate Hertweck</td>
<td>Assistant professor in the Department of Biology at the University of Texas at Tyler. Her general research interests include evolutionary biology, phylogenetics, and comparative genomics, although she is particularly fond of transposable elements, plant systematics, and next-generation sequencing analysis. She is an alumna of Western Kentucky University (B.S.), University of Missouri (Ph.D.), and NESCend/Duke University (postdoctoral fellow). Steering Committee (2016 Member, 2017 Chair)</td>
</tr>
<tr>
<td>Christina Koch</td>
<td>Mathematician who loves people, computers and helping people use computers. She currently works as a research computing facilitator at the University of Wisconsin, Madison, where she serves as a liaison between researchers and campus compute resources. Instructor Trainer, Maintainer: Instructor Training Steering Committee (2017 Vice-Chair)</td>
</tr>
<tr>
<td>Mateusz Kuzak</td>
<td>eScience Research Engineer working at the Netherlands eScience Center. Has background in bioinformatics and live cell imaging, and is passionate about Open Source, teaching and Web. He is currently working on various research software, programming mostly in R, Python and Javascript.</td>
</tr>
<tr>
<td>Karin Lagesen</td>
<td>PhD in bioinformatics and has since focused on the processing of high throughput sequencing data in various forms. With a background in both computational science and molecular biology, she has taught programming and computational analysis to both master and PhD students and believes that this should be an important part of the scientific process. Steering Committee (2016 Member, 2017 Chair)</td>
</tr>
<tr>
<td>Sue McClatchy</td>
<td>Bioinformatician and research program manager at the Jackson Laboratory. Provides research training at all academic levels from high school to faculty. Mentors students and develops training materials for analysis of quantitative and high-throughput data. Her expertise in curriculum design and instruction</td>
</tr>
</tbody>
</table>

Steering Committee (2017)

<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rayna Harris</td>
<td>Graduate student at the University of Texas in Austin. Studies the neuromolecular basis of social behavior and is involved in several initiatives to enhance training in the life sciences. Instructor Trainer, Steering Committee (2016 Member, 2017 Secretary)</td>
</tr>
<tr>
<td>Kate Hertweck</td>
<td>Assistant professor in the Department of Biology at the University of Texas at Tyler. Her general research interests include evolutionary biology, phylogenetics, and comparative genomics, although she is particularly fond of transposable elements, plant systematics, and next-generation sequencing analysis. She is an alumna of Western Kentucky University (B.S.), University of Missouri (Ph.D.), and NESCend/Duke University (postdoctoral fellow). Steering Committee (2016 Member, 2017 Chair)</td>
</tr>
<tr>
<td>Christina Koch</td>
<td>Mathematician who loves people, computers and helping people use computers. She currently works as a research computing facilitator at the University of Wisconsin, Madison, where she serves as a liaison between researchers and campus compute resources. Instructor Trainer, Maintainer: Instructor Training Steering Committee (2017 Vice-Chair)</td>
</tr>
<tr>
<td>Mateusz Kuzak</td>
<td>eScience Research Engineer working at the Netherlands eScience Center. Has background in bioinformatics and live cell imaging, and is passionate about Open Source, teaching and Web. He is currently working on various research software, programming mostly in R, Python and Javascript.</td>
</tr>
<tr>
<td>Karin Lagesen</td>
<td>PhD in bioinformatics and has since focused on the processing of high throughput sequencing data in various forms. With a background in both computational science and molecular biology, she has taught programming and computational analysis to both master and PhD students and believes that this should be an important part of the scientific process. Steering Committee (2016 Member, 2017 Chair)</td>
</tr>
<tr>
<td>Sue McClatchy</td>
<td>Bioinformatician and research program manager at the Jackson Laboratory. Provides research training at all academic levels from high school to faculty. Mentors students and develops training materials for analysis of quantitative and high-throughput data. Her expertise in curriculum design and instruction</td>
</tr>
</tbody>
</table>
Governance Structures

Steering Council

The Project will have a Steering Council that consists of Project Contributors who have produced contributions that are substantial in quality and quantity, and sustained over at least one year. The overall role of the Council is to ensure, with input from the Community, the long-term well-being of the project, both technically and as a community.

During the everyday project activities, council members participate in all discussions, code review and other project activities as peers with all other Contributors and the Community. In these everyday activities, Council Members do not have any special power or privilege through their membership on the Council. However, it is expected that because of the quality and quantity of their contributions and their expert knowledge of the Project Software and Services that Council Members will provide useful guidance, both technical and in terms of project direction, to potentially less experienced contributors.

The Steering Council and its Members play a special role in certain situations. In particular, the Council may, if necessary:

- Make decisions about the overall scope, vision and direction of the project.
- Make decisions about strategic collaborations with other organizations or individuals.
- Make decisions about specific technical issues, features, bugs and pull requests. They are the primary mechanism of guiding the code review process and merging pull requests.
- Make decisions about the Services that are run by The Project and manage those Services for the benefit of the Project and Community.
- Update policy documents such as this one.
- Make decisions when regular community discussion doesn’t produce consensus on an issue in a reasonable time frame.
Decision Making
Consensus-based decision making by the community

Normally, all project decisions will be made by consensus of all interested Contributors. The primary goal of this approach is to ensure that the people who are most affected by and involved in any given change can contribute their knowledge in the confidence that their voices will be heard, because thoughtful review from a broad community is the best mechanism we know of for creating high-quality software.

The mechanism we use to accomplish this goal may be unfamiliar for those who are not experienced with the cultural norms around free/open-source software development. We provide a summary here, and highly recommend that all Contributors additionally read Chapter 4: Social and Political Infrastructure of Karl Fogel’s classic Producing Open Source Software, and in particular the section on Consensus-based Democracy, for a more detailed discussion.

In this context, consensus does not require:

- that we wait to solicit everybody’s opinion on every change,
- that we ever hold a vote on anything,
- or that everybody is happy or agrees with every decision.
Consensus-based decision making by the community

Normally, all project decisions will be made by consensus of all interested Contributors. The primary goal of this approach is to ensure that the people who are most affected by and involved in any given change can contribute their knowledge in the confidence that their voices will be heard, because thoughtful review from a broad community is the best mechanism we know of for creating high-quality software.

The mechanism we use to accomplish this goal may be unfamiliar for those who are not experienced with the cultural norms around free/open-source software development. We provide a summary here, and highly recommend that all Contributors additionally read Chapter 4: Social and Political Infrastructure of Karl Fogel’s classic Producing Open Source Software, and in particular the section on Consensus-based Democracy, for a more detailed discussion.

In this context, consensus does not require:

- that we wait to solicit everybody’s opinion on every change,
- that we ever hold a vote on anything,
- or that everybody is happy or agrees with every decision.

Council decision making

If it becomes necessary for the Steering Council to produce a formal decision, then they will use a form of the Apache Foundation voting process. This is a formalized version of consensus, in which +1 votes indicate agreement, -1 votes are vetoes (and must be accompanied with a rationale, as above), and one can also vote fractionally (e.g. -0.5, +0.5) if one wishes to express an opinion without registering a full veto. These numeric votes are also often used informally as a way of getting a general sense of people’s feelings on some issue, and should not normally be taken as formal votes. A formal vote only occurs if explicitly declared, and if this does occur then the vote should be held open for long enough to give all interested Council Members a chance to respond — at least one week.

In practice, we anticipate that for most Steering Council decisions (e.g., voting in new members) a more informal process will suffice.
Code of Conduct
Code of Conduct

Software Carpentry and Data Carpentry are community organizations. We value the involvement of everyone in this community - learners, instructors, hosts, developers, steering committee members and staff. We are committed to creating a friendly and respectful place for learning, teaching and contributing. All participants in our events and communications are expected to show respect and courtesy to others.

To make clear what is expected, everyone participating in Software Carpentry and Software Carpentry activities is required to conform to the following Code of Conduct. This code of conduct applies to all spaces managed by Software Carpentry and Data Carpentry including, but not limited to, workshops, email lists, online forums and on GitHub. Workshop hosts are expected to assist with enforcement of the Code of Conduct.
Code of Conduct

NumFOCUS Code of Conduct

We expect all NumFOCUS sponsored and affiliated projects to adopt a code of conduct that ensures a productive, respectful environment for all open source contributors and participants. The model given to our projects to adopt is below. We are also committed to providing a strong and enforced code of conduct at all NumFOCUS-organized events and conferences.

Reporting Inappropriate Conduct

If you have experienced or witnessed behavior that violates the NumFOCUS Code of Conduct, please reach out to Executive Director Leah Silen via email or by phone (512-222-5449). The team at NumFOCUS takes reports of misconduct very seriously and is committed to preserving and maintaining the welcoming nature of our community.

Contributor Code of Conduct

As contributors and maintainers of this project, and in the interest of fostering an open and welcoming community, we pledge to respect all people who contribute through reporting issues, posting feature requests, updating documentation, submitting pull requests or patches, and other activities.
SciPy 2016 Code of Conduct

SciPy is a community conference intended for networking and collaboration in the scientific Python developer community.

We value the participation of each member of this community and want all attendees to have an enjoyable and fulfilling experience. Accordingly, all attendees are expected to show respect and courtesy to other attendees throughout the conference and at all conference events, whether officially sponsored by SciPy or not.

To make clear what is expected, all delegates, speakers, exhibitors and volunteers at any SciPy event are required to conform to the following Code of Conduct. Organizers will enforce this code throughout the event.
Thank you!